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ABSTRACT 

Some results on longest circuits on graphs of cell decompositions of 
closed 2-surfaces are presented. 

1. Introduction 

Let v(G) denote the number of vertices of a graph G, and let h(G) denote the 

maximal length of simple circuits in G. If fg is a family of graphs we call a(fg) the 

shortness exponent of ~ provided 

tr(f~) = lira inf log h(G) 
G~, log v(G) 

(see GriJnbaum-Walther [-5]). 

It measures the order of magnitude in which h(G) increases as v(G) tends linearly 

to infinity. One might expect that at least a certain percentage of vertices could 

always be covered by a longest circuit, which would imply tr(fr = 1 for any 

given family f#. This, however, is not true. GriJnbaum and Walther have inves- 

tigated a number of families for which tr is less than one. In fact, it is not even 

known whether the shortness exponent is always greater than zero. (Griinbaum 

and Walther [-5] conjecture tr > log 2/log 3 for every family of polyhedral graphs.) 

In particular, the following families are of interest. Let ~(g, r) denote the 

family of all 3-connected planar graphs with the following property. 

(1) Every face has at most q sides, and every vertex has valence at most r. 

We denote the shortness exponent of f~(q,r) by a(q,r). GriJnbaum and 

Walther [5] establish that 
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a(6, 4) =< log 5/log 7 

a(12,3) < log 26 /log 27 

a(3,12) < log5/ log7 

among other results. 

We shall~ in this paper, be concerned with families of graphs whose shortness 

exponent is one. Instead of the families if(q, r) we shall, more generally, consider 

the families ~ ' (q ,  r) of all graphs embedded as 1-skeletons in cell complexes whose 

sets are closed 2-manifolds of arbitrary genus and orientation, such that (1) is 

satisfied. We set a(~'(q~ r)) = s(q, r). Our results are summarized in Theorem 1.1. 

THEOREM 1.1. (i) s(4, 4) = 1 

(ii) s(6, 3) = 1 

(iii) s(3, 7) = 1. 

In an earlier paper [2] we have shown that all members of ..r162 6) are Hamil- 

tonian. The pull over method developed there is also used here for the proof of  

Theorem 1.1. (For proof of (i) see Section 2, for proof of (ii) see Section 3; for 

proof of (iii) see Section 4.) 

If  p, is the number of k-sided faces of a graph G of any family ~r162 r), and if 

Vk is the number of  k-valent vertices of G then, by a conclusion from Euler's 

theorem, 

X (4 - k)(PR + ok) = 8(1 - g) 
k>=a 

where O is the genus of the manifold carrying G (compare Griinbaum [4]). 

Therefore, . //(4,4) consists only of the family / (4 ,4 )  plus the corresponding 

families on the torus and on the projective plane. In case of the torus, Pa + va = 0, 

hence Pa = va = 0, and the graphs are Hamiltonian by a result of  Altshuler [1]. 

For if(4, 4) a stronger result can also be established [3]. However, t (4 ,  4) is not 

Hamiltonian [6]. 

J. Kraeft has contributed to the proof of part (iii~ of Theorem 1.1. 

2. Proof of Theorem 1.1 (i) 

We begin by stating an obvious fact. 

LEMMA 2.1. Let every member G of a fami ly  .1~r r) of graphs possess a 

circuit H(G) with the following property: there exists a constant integer m, 
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depending only on r162 r), such that every vertex of G has distance at most m 

from H(G). Then s(q, r )=  1. 

We shall use Lemma 2.1 in this section as well as in subsequent sections. 

Let G be a member of ff(4,4). If  F (~ is a face of G (that is, (i) of the polytope P .  

in E a such that skeltP = G, or (ii) of the closed 2-dimensional cell complex 

having G as skeleton), its three or four boundary edges form a circuit Ho. If  F (1) 

is adjacent to F, that is, has an edge in common with F (~ we pull H o over F (1) as 

indicated in Fig. 1, obtaining a circuit H~ that contains all vertices of F (~ ~ F (1J 

: : % 

t o , o . J e e  

F ~1~ i " �9 , o  

....'~tl l'.. 
. ~  I 

V 
Fig. 1. 

Then we choose an appropriate face F (2) adjacent to F (~ or F (~) and change H t 

into a circuit containing all vertices of F C~ w F (t) k_) F (2). In this way we build up 

circuits with an increasing number of vertices, We also apply operations as shown 

in Fig. 2. In these, we lose one vertex and win three or two vertices. 

"'" i I . . . . . .  ..."" i 
. ." : 

/ f 
Fig. 2. 

Suppose now that the elementary operations described above have been applied 

in such a way that a maximal number of vertices of G is covered by the circuit H. 

L ~  2.2. I f  a face F of G has no vertex on H then all vertices adiacent 

to the vertices of F are on H. 

PROOF. If no vertex adjacent to a vertex of F is on H we set F = FI  and choose 

a face F2 of G adjacent to F. Clearly, F2 has no vertex lying on H. If no vertex 

adjacent to a vertex of F2 is also on H, we again choose a face F 3 ~ FI  adjacent 

to F z. Continuing in this way we eventually find a face F~ which possesses no 
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vertex lying on H, such that a vertex Pt of G adjacent to a vertex b of F~ is on H. 

Let a, c be the vertices of F~ adjacent to b (Fig. 3). 

0 

F~ 

F '  

q 

C 

F 
i l l  

b 
F" 

I 

P~ 

Fig. 3. 

13 4 

PZ 

If p~ had valence 3, H would contain an edge of the face F '  with a, b, Pl or 

c, b, Pa, say a. b,pl as vertices. Since a is not on H, the face F '  would be a quad- 

rangle with a fourth vertex q. Then, however, H could be prolonged by pulling 

qPt over F' ,  that is, replacing qPl by qabpl. This contradicts the maximality of H. 

So we may assume Pt to have valence 4 and we denote by F" the face satisfying 

F' OF" = plb. Furthermore, we denote by P2 the vertex ~ b of F" adjacent to 

Pl. Clearly, PlP2 is on H. If F '  were a triangle, PlP2 could be replaced by the 

longer path p~bp2, a contradiction. So F" is a quadrangle. We denote its fourth 

vertex by P3. 

If  P3 were not on H, we could replace P~P2 by p~bpap2. Thus P3 is on H. Let 

F"  be the face adjacent to Ft and F". If F"  were a triangle or if  its fourth vertex 

P4 were not on H, we could apply one of the elementary operations of Fig. 2 and 

extend H. So F ~' is a quadrangle, and its fourth vertex P4 lies on H. Clearly, PAP,, 

is not on H since otherwise PAP,, could be replaced by p3bcp,,. Therefore, H must 

contain the edges indicated by heavy lines in Fig. 3. 

We apply to P4 the same arguments as we have applied to p~. Continuing in 

this way, we obtain the situation shown in Fig. 4 or 5, depending on whether Ft 

is a quadrangle or a triangle. In both cases, all vertices adjacent to a vertex of F t 

lie on H. Therefore, l = 1, and Lemma 2.2 follows. 

Clearly, every vertex of G now has distance at most 1 from H. Therefore, by 

Lemma 2.1, s(4,4) = 1. 
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r- 
Fig. 4. Fig. 5. 

3. Proof of Theorem 1.1 (ii) 

Let G be a member of  ~ (6, 3). As in Section 2, we let Ho be the boundary of  a 

face F c~ and pull it over a face F cl) adjacent to F (~ obtaining a circuit passing 

through all vertices of  F (~ u F m.  Again, we assume this process has been carried 

out in an optimal way so as to build up a circuit H in G covering a maximal 

number of  vertices. 

LEMMA 3.1. H contains a vertex of every face of G. 

PROOF. Suppose there exists a face F free of vertices of  H. We may choose F 

in such a way that there exists a facet F '  adjacent to F that is not free of  vertices 

of  H. I f  only one side xy of F '  were on H, we could replace xy by the remaining 

sides of  F ' ,  obtaining a circuit longer than H. So we can assume at least three 

vertices of  F '  to lie on H among which is one, say p, adjacent to a vertex a of  F. 

Let b be the vertex o f F  adjacent to a such that F n F '  = ab. We denote by q the 

vertex r a of  F '  adjacent to p, and by r the vertex r a of  F '  adjacent to b. F '  

b 2 
,o o~Q, 

b3...." 
!Fi b Io b4,. . o4 

S2 

Fig. 6. 
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cannot be a triangle since otherwise a or b would lie on H. If F '  were a pentagon 

or a quadrangle (q = r in the latter case), H would necessarily contain qr (in case 

q # r) or pr (in case q = r), and hence could be extended by substituting pabr  

for pqr  or pr, respectively. This contradicts the maximality of H. So let s be the 

sixth vertex of F ' .  

We denote the vertices of F by a, b = bo, bl, " ' ,  b,, where 4 >- n > 1 and b~ is 

adjacent to b~_~, i = 1, . . . ,n.  

If  s were not on H, then r would not be on H, and we could pull H over F ' ,  a 

contradiction to the maximality of H. So s lies on H. If qs were part of H, we could 

replace pqs or pqsr (in case r, and hence sr, are also on H) by pab,  b,_ 1 ... b ibrs  

or pab,  b ,_ l  ... blbr,  respectively, thus winning at least three points and losing 

at most two. This again contradicts the maximality of H. 

Therefore, rs is on H, but qs is not on H. Let F" be the face of G satisfying 

F'  n F "  = rs. We denote the vertices o f F "  by r,s = So, s~, . . . ,s, ,  where 4 -> n > 2 

and st is adjacent to s~_~, i = 1, . . . ,n.  The same arguments applied to p we now 

apply to r, obtaining that rs, is on H but s,t is not on H, where t # s,_ ~ is adjacent 

to s,. Thus s,s,_ 1 is part of H. This implies that F" is a pentagon or a hexagon; in 

the former case we set sa = s2. I f  F" is a hexagon, either s~s2 is on H, s2s 3 is on H, 

or s2 is not on H. In any of  these cases we can pull back H over F", replacing 

s2slsrs4s3, slsrs4s3s2, or slsrs ,s  3 by s2sa, sis2, or sls2s a, respectively. Having 

done this we replace pq by pab:, ... bl brsq. Altogether we lose at most two vertices 

and win at least three. This contradicts the maximality of H and we have proved 

Lemma 3.1. 

Now clearly every vertex of G is seen to have distance at most 3 from H. There- 

fore, by Lemma 2.1, s(6,3) = 1. 

4. Proof of Theorem 1.1 (iii) 

Let now G be a member of ~(3,7).  Starting with the boundary of some 

triangle we build up a circuit by pulling it successively over faces of G, as we have 

done in the preceding sections for other graphs. Suppose we have obtained a 

circuit H of maximal possible length in G. 

LEMMA 4.1. I f  a face t  T has no vertex on H then there exists a vertex adjacent  

to a side o f  T that is on H.  

PROOF. As in the proof  of Theorem 1.1 (i), we may assume that there exists a 

vertex p of H adjacent to a vertex, say rl ,  of  T. Suppose none of the vertices 
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tl,  t2, t3 not on T but adjacent to the sides of T, respectively, is on H. Let the r i 

and the ti be numbered as in Fig. 7 (i = 1, 2, 3). We also introduce Tt, T2, T3 as 

shown in the figure. 

t 3 

r3 
rz 

t 

u, I tz 
qo q7 

ql 

q3 q4 
Fig. 7. 

First we suppose p = Po to be adjacent to t I r 1. Let Pt ~ tx be adjacent to porx 

and Ul ~ rt  be adjacent to ttPo. If PoPt were on H we could replace it by porapl, 

a contradiction. 

Nor is pout on H. Let Pt, P3,qo, qi, "",q7 be introduced as in Fig. 7 where it 

is assumed that each of  the vertices Po, Pt, P2 has valence 7. If Poq2 is part of H, 

Ptq2 cannot be on H since, otherwise, we could replace Poq2Pt by pottrxpl. But 

Pt must lie on H since, otherwise, Poq2 could be replaced by portplq2 . If  q3Plq4 

or q4Plq5 were a path of H we could replace it by q3q4 or q4q5, respectively, and 

extend Poq2 as before. PlP2 is not on H since it could be extended to ptrtP2. So 

q3P~q5 is on H. By similar argument it is shown that P2 is on H but neither P2qs 

nor P2P3 is on H. Therefore, q6P2q7 is on H. Then we can replace q6P2q7 by 

q6q7 and Ptq5 by plrtp2qs, again a contradiction. 

If  one of  the vertices Po, P~, P2 has valence < 7 we obtain similar contradictions. 

Thus we find that qoPoqt is a path of H. 

Let ut, u2, ua, u4 be introduced as shown in Fig. 8. We assume again that they 

all have valence 7; if  not, the arguments become easier and can be left out here. 

Hence we can introduce Sl, s2, "",Sxo as shown in Fig. 8. 
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t3 

Fig. 8. 

tz 

If  ul were not on H, we could replace Poqo by poulqo. If  u l q  0 were on H we 

could replace u lqop  0 by  u l t l r l p  o. l f  slu~s 2 or s2u~s 3 were on H we could replace 

it by s is  z or s2s 3, respectively, and extend Poqo to porl t~utqo.  Clearly, u~u 2 is 

not on H. Therefore, s lu lsa  must be a path of H. 

u2 is on H since, otherwise, u~s3 could be replaced by ulu2s3. If  u2s3 were on H, 

we could replace qoPoq~ by qoq~ and u2s3u ~ by u2t l rar lpoul .  None of the paths 

s4u2s 5 or ssu2s6 is on H since it could be replaced by s4s5 or sss 6, respectively, so 

that uls3 were extendable to ult~u2s 3. Nor is u2u3 on H. Therefore, s4u2s 6 is on H. 

Clearly, u3 must also lie on H, but none of the paths stuns8 or $8u3s9 is on H. 

Suppose uas 6 is on H. Then either (i) u 4 is not on H and we replace u3s6u2 by 

u3u4rarlt lu2,  or (ii) u4 is on H. In the second case the same arguments as applied 

to Po show that SgU4Slo is a path of H. We can replace sgu4Sto by sgslo, and 

replace u2s6u3 by u2tlrlrau4u3. Since uau4 is not on H, we conclude that 87u3s 9 

is on H. If  u4 is not on H, we replace u359 by u3tlu4S 9. If u4, and hence sgu4s~o 

(as qoPoql), is on H, we replace U3SgU 4 by u3tir~r3u4. 

Therefore, the assumption that P0 is adjacent to r~t~ leads to a contradiction. 

In fact, no vertex adjacent to a side of TI, / '2 ,  or T3 is on H. 

Therefore we can replace T by T~ as shown in Fig. 8. By the same reasoning 

as used above we see that p~, u~ are not on H. Now we replace T by T '  and 

conclude that P2 is not a vertex of H (Fig. 7). This contradiction proves Lemma 

4.1. Hence, by Lemma 4.1 and Lemma 2.1, s(3,7) = 1. 
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