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ABSTRACT

Some results on longest circuits on graphs of cell decompositions of
closed 2-surfaces are presented.

1. Introduction

Let v(G) denote the number of vertices of a graph G, and let h(G) denote the
maximal length of simple circuits in G. If ¢ is a family of graphs we call o(%) the
shortness exponent of ¢ provided

. . . log h(G)
70 = 13 Tog w0
(see Griinbaum-Walther [5]).

It measures the order of magnitude in which #(G) increases as v(G) tends linearly
to infinity. One might expect that at least a certain percentage of vertices could
always be covered by a longest circuit, which would imply (%) = 1 for any
given family ¢. This, however, is not true. Griinbaum and Walther have inves-
tigated a number of families for which ¢ is less than one. In fact, it is not even
known whether the shortness exponent is always greater than zero. (Griinbaum
and Walther [5] conjecture o =1og2/log3 for every family of polyhedral graphs.)

In particular, the following families are of interest. Let %(g,r) denote the
family of all 3-connected planar graphs with the following property.

(1) Every face has at most g sides, and every vertex has valence at most r.

We denote the shortness exponent of %(q,r) by o(q,r). Griinbaum and
Walther [5] establish that
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0(6,4) log5/log7
0(12,3) = log26/log27
0(3,12) < log5/log7

IIA

among other results.

We shall, in this paper, be concerned with families of graphs whose shortness
exponent is one. Instead of the families (q, r) we shall, more generally, consider
the families .#(q, r) of all graphs embedded as 1-skeletons in cell complexes whose
sets are closed 2-manifolds of arbitrary genus and orientation, such that (1) is
satisfied. We set o(#(q, 1)) = s(q, r). Our results are summarized in Theorem 1.1.

THEOREM 1.1, (i) s(4,9) =1
(ii) s(6,3) =1
(iti) s(3,7) = 1.

In an earlier paper [2] we have shown that all members of .#(3,6) are Hamil-
tonian. The pull over method developed there is also used here for the proof of
Theorem 1.1. (For proof of (i) see Section 2; for proof of (ii) see Section 3; for
proof of (iii) see Section 4.)

If p, is the number of k-sided faces of a graph G of any family .#(q,r), and if
v, is the number of k-valent vertices of G then, by a conclusion from Euler’s
theorem,

ki @-k(p+v)=281-9g)
where g is the genus of the manifold carrying G (compare Griinbaum [4]).
Therefore, #(4,4) consists only of the family ¢(4,4) plus the corresponding
families on the torus and on the projective plane. In case of the torus, p; + v; = 0,
hence p; = vy = 0, and the graphs are Hamiltonian by a result of Altshuler [1].
For 9(4,4) a stronger result can also be established [3]. However, 9(4,4) is not
Hamiltonian [6].
J. Kraeft has contributed to the proof of part (iii’ of Theorem 1.1.

2. Proof of Theorem 1.1 (i)

We begin by stating an obvious fact.

LemMa 2.1. Let every member G of a family #(q,r) of graphs possess a
circuit H(G) with the following property: there exists a constant integer m,
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depending only on #(q,r), such that every vertex of G has distance at most m
from H(G). Then s(q,r)= 1.

We shall use Lemma 2.1 in this section as well as in subsequent sections.

Let G be a member of ¥(4,4). If F is a face of G (that is, (i) of the polytope P.
in E® such that skel,P = G, or (ii) of the closed 2-dimensional cell complex
having G as skeleton), its three or four boundary edges form a circuit H,. If F®
is adjacent to F, that is, has an edge in common with F®, we pull H, over F") as
indicated in Fig. 1, obtaining a circuit H, that contains all vertices of F(® y F®V

wesscsocrses
.

R S,

F(O) S (o)

Fig. 1.

Then we choose an appropriate face F» adjacent to F® or F) and change H,
into a circuit containing all vertices of F@ U FV U F®_ In this way we build up
circuits with an increasing number of vertices. We also apply operations as shown
in Fig. 2. In these, we lose one vertex and win three or two vertices,
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Fig. 2.

Suppose now that the elementary operations described above have been applied
in such a way that a maximal number of vertices of G is covered by the circuit H.

Lemma 2.2. If a face F of G has no vertex on H then all vertices adjacent
to the vertices of F are on H.

Proor. If no vertex adjacent to a vertex of F is on H we set F = F and choose
a face F, of G adjacent to F. Clearly, F, has no vertex lying on H. If no vertex
adjacent to a vertex of F, is also on H, we again choose a face F; # F, adjacent
to F,. Continuing in this way we eventually find a face F; which possesses no
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vertex lying on H, such that a vertex p, of G adjacent to a vertex b of F,is on H.
Let a, ¢ be the vertices of F, adjacent to b (Fig. 3).

Fig. 3.

If p, had valence 3, H would contain an edge of the face F’ with a, b, p, or
¢, b, ps, say a. b,p, as vertices. Since a is not on H, the face F’ would be a quad-
rangle with a fourth vertex g. Then, however, H could be prolonged by pulling
qp, over F’', that is, replacing gp, by qabp,. This contradicts the maximality of H.
So we may assume p, to have valence 4 and we denote by F” the face satisfying
F' NF" = p,b. Furthermore, we denote by p, the vertex # b of F” adjacent to
p1- Clearly, p,p, is on H. If F’ were a triangle, p,p, could be replaced by the
longer path p,bp,, a contradiction. So F” is a quadrangle. We denote its fourth
vertex by ps.

If p; were not on H, we could replace p,p, by p;bpsp,. Thus p; is on H. Let
F"” be the face adjacent to F, and F”. If F” were a triangle or if its fourth vertex
ps were not on H, we could apply one of the elementary operations of Fig. 2 and
extend H. So F” is a quadrangle, and its fourth vertex p, lies on H. Clearly, p;p,
is not on H since otherwise p;p, could be replaced by p;bcp,. Therefore, H must
contain the edges indicated by heavy lines in Fig. 3.

We apply to p, the same arguments as we have applied to p,. Continuing in
this way, we obtain the situation shown in Fig. 4 or 5, depending on whether F,
is a quadrangle or a triangle. In both cases, all vertices adjacent to a vertex of F,
lie on H. Therefore, I = 1, and Lemma 2.2 follows.

Clearly, every vertex of G now has distance at most 1 from H. Therefore, by
Lemma 2.1, s(4,4) = 1.
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Fig. 4. Fig. 5.

3. Proof of Theorem 1.1 (i)

Let G be a member of & (6, 3). As in Section 2, we let H, be the boundary of a
face F(© and pull it over a face F{ adjacent to F(®, obtaining a circuit passing
through all vertices of F(® U F(1), Again, we assume this process has been carried
out in an optimal way so as to build up a circuit H in G covering a maximal
number of vertices.

LemMA 3.1. H contains a vertex of every face of G.

ProOOF. Suppose there exists a face F free of vertices of H. We may choose F
in such a way that there exists a facet F’ adjacent to F that is not free of vertices
of H. If only one side xy of F’ were on H, we could replace xy by the remaining
sides of F’, obtaining a circuit longer than H. So we can assume at least three
vertices of F’ to lie on H among which is one, say p, adjacent to a vertex a of F.
Let b be the vertex of F adjacent to a such that F n F' = ab. We denote by g the
vertex # a of F’ adjacent to p, and by r the vertex # a of F’ adjacent to b. F’
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cannot be a triangle since otherwise a or b would lie on H. If F’ were a pentagon
or a quadrangle (g = r in the latter case), H would necessarily contain gr (in case
q # r) or pr (in case g = r), and hence could be extended by substituting pabr
for pgqr or pr, respectively. This contradicts the maximality of H. So let s be the
sixth vertex of F’.

We denote the vertices of F by a, b = by, by,++, b,, where 4 2 n =1 and b, is
adjacent to b;_(, i = 1,--,n.

If s were not on H, then r would not be on H, and we could pull H over F’, a
contradiction to the maximality of H. So s lies on H. If gs were part of H, we could
replace pgs or pgsr (in case r, and hence sr, are also on H) by pab,b,_, - b brs
or pab,b,_, --- b br, respectively, thus winning at least three points and losing
at most two. This again contradicts the maximality of H.

Therefore, rs is on H, but gs is not on H. Let F” be the face of G satisfying
F’ NF" = rs. We denote the vertices of F” by r,s = sg, S1,**,5,, Where 4 =n =2
and s; is adjacent to s;,_,, i = 1,-.-,n. The same arguments applied to p we now
apply to r, obtaining that rs, is on H but st is not on H, where t # s,_, is adjacent
to s,. Thus s,s,_, is part of H. This implies that F” is a pentagon or a hexagon; in
the former case we set s; = s,. If F” is a hexagon, either s;s, is on H, s,55 is on H,
or s, is not on H. In any of these cases we can pull back H over F”, replacing
8251578453, S157545383, O §;5r5,S3 by 5,83, 5,55, OF 55,83, respectively. Having
done this we replace pg by pab, --- b, brsq. Altogether we lose at most two vertices
and win at least three. This contradicts the maximality of H and we have proved
Lemma 3.1.

Now clearly every vertex of G is seen to have distance at most 3 from H. There-
fore, by Lemma 2.1, 5(6,3) = 1.

4. Proof of Theorem 1.1 (iii)

Let now G be a member of #(3,7). Starting with the boundary of some
triangle we build up a circuit by pulling it successively over faces of G, as we have
done in the preceding sections for other graphs. Suppose we have obtained a
circuit H of maximal possible length in G.

LemMma 4.1. Ifafacet T has no vertex on H then there exists a vertex adjacent
to a side of T that is on H.

ProOOF. As in the proof of Theorem 1.1 (i), we may assume that there exists a
vertex p of H adjacent to a vertex, say ry, of T. Suppose none of the vertices



Vol. 16, 1973 SHORTNESS EXPONENTS 59

t;,t5, 13 not on T but adjacent to the sides of T, respectively, is on H. Let the r;
and the t; be numbered as in Fig. 7 (i=1, 2, 3). We also introduce Ty, T,, T; as
shown in the figure.

First we suppose p = p, to be adjacent to t,r,. Let p; # ¢, be adjacent to p,r,
and u; # ry be adjacent to t;p,. If p,p, were on H we could replace it by por;p;,
a contradiction.

Nor is pyu, on H. Let py, P3, 90,41, ***»q; be introduced as in Fig. 7 where it
is assumed that each of the vertices po, py, p» has valence 7. If p,q, is part of H,
P14, cannot be on H since, otherwise, we could replace py,q,p, by pot;r,p;- But
p; musi lie on H since, otherwise, pyg, could be replaced by poripid,- If 3P4,
or q,p;qs were a path of H we could replace it by g39, or q,95, respectively, and
extend pyq, as before. p,p, is not on H since it could be extended to p,r,p,. So
qsP14s is on H. By similar argument it is shown that p, is on H but neither p,q;
nor p,ps is on H. Therefore, q¢p,q; is on H. Then we can replace g¢p,q; by
d¢q7 and p,qs by p,r.p.qs, agiin a contradiction,

If one of the vertices py, py, p, has valence < 7 we obtain similar contradictions.
Thus we find that q,p,q, is a path of H.

Let uy, u,, us, u, be introduced as shown in Fig. 8. We assume again that they
all have valence 7; if not, the arguments become easier and can be left out here.
Hence we can introduce s,, s,,*,510 as shown in Fig. 8.
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If u; were not on H, we could replace pyq, by pot1go- If 9, were on H we
could replace u,qopo by uyt,7,po- If s;u;s, or s,u,s; were on H we could replace
it by 5.5, or 5,53, respectively, and extend poqq to por t14.4,- Clearly, u,u, is
not on H. Therefore, s u,s; must be a path of H.

u, is on H since, otherwise, #s5 could be replaced by u,u,s,. If u,s, were on H,
we could replace gopog; by goq; and u,s;u; by u,t r3r,pou;. None of the paths
54U,85 OF SsU,Se is on H since it could be replaced by s,55 or s554, respectively, so
that u,s; were extendable to u,?,u,s,. Nor is u,u; on H. Therefore, s,u,s, is on H.

Clearly, u; must also lie on H, but none of the paths s;u35g OF Sgli3S, is on H.
Suppose u,S; is on H. Then either (i) u, is not on H and we replace uzsqu, by
Uyu,rat Uy, OF (ii) u, is on H. In the second case the same arguments as applied
to p, show that syu,s;, is 2 path of H. We can replace ssuss:6 by 54510, and
replace u,squz by u,t,r rsuus. Since usu, is not on H, we conclude that s,uss,
is on H. If u, is not on H, we replace u;s, by u3t u,55. If u,, and hence squ,s,0
(as qoPoq,), is on H, we replace u;squy by uztiririu,.

Therefore, the assumption that p, is adjacent to r,t; leads to a contradiction.
In fact, no vertex adjacent to a side of Ty, T,, or Ty is on H.

Therefore we can replace T by T, as shown in Fig. 8. By the same reasoning
as used above we see that p;, u, are not on H. Now we replace T by T’ and
conclude that p, is not a vertex of H (Fig. 7). This contradiction proves Lemma
4.1. Hence, by Lemma 4.1 and Lemma 2.1, s(3,7) = 1.
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