

ON SHORTNESS EXPONENTS OF FAMILIES OF GRAPHS[†]

BY

GÜNTER EWALD

ABSTRACT

Some results on longest circuits on graphs of cell decompositions of closed 2-surfaces are presented.

1. Introduction

Let $v(G)$ denote the number of vertices of a graph G , and let $h(G)$ denote the maximal length of simple circuits in G . If \mathcal{G} is a family of graphs we call $\sigma(\mathcal{G})$ the *shortness exponent* of \mathcal{G} provided

$$\sigma(\mathcal{G}) = \liminf_{G \in \mathcal{G}} \frac{\log h(G)}{\log v(G)}$$

(see Grünbaum-Walther [5]).

It measures the order of magnitude in which $h(G)$ increases as $v(G)$ tends linearly to infinity. One might expect that at least a certain percentage of vertices could always be covered by a longest circuit, which would imply $\sigma(\mathcal{G}) = 1$ for any given family \mathcal{G} . This, however, is not true. Grünbaum and Walther have investigated a number of families for which σ is less than one. In fact, it is not even known whether the shortness exponent is always greater than zero. (Grünbaum and Walther [5] conjecture $\sigma \geq \log 2 / \log 3$ for every family of polyhedral graphs.)

In particular, the following families are of interest. Let $\mathcal{G}(q, r)$ denote the family of all 3-connected planar graphs with the following property.

(1) Every face has at most q sides, and every vertex has valence at most r .

We denote the shortness exponent of $\mathcal{G}(q, r)$ by $\sigma(q, r)$. Grünbaum and Walther [5] establish that

[†] This work has been supported by the National Research Council of Canada.

Received March 21, 1972 and in revised version August 10, 1973

$$\sigma(6, 4) \leq \log 5 / \log 7$$

$$\sigma(12, 3) \leq \log 26 / \log 27$$

$$\sigma(3, 12) \leq \log 5 / \log 7$$

among other results.

We shall, in this paper, be concerned with families of graphs whose shortness exponent is one. Instead of the families $\mathcal{G}(q, r)$ we shall, more generally, consider the families $\mathcal{M}(q, r)$ of all graphs embedded as 1-skeletons in cell complexes whose sets are closed 2-manifolds of arbitrary genus and orientation, such that (1) is satisfied. We set $\sigma(\mathcal{M}(q, r)) = s(q, r)$. Our results are summarized in Theorem 1.1.

THEOREM 1.1. (i) $s(4, 4) = 1$

(ii) $s(6, 3) = 1$

(iii) $s(3, 7) = 1$.

In an earlier paper [2] we have shown that all members of $\mathcal{M}(3, 6)$ are Hamiltonian. The *pull over* method developed there is also used here for the proof of Theorem 1.1. (For proof of (i) see Section 2; for proof of (ii) see Section 3; for proof of (iii) see Section 4.)

If p_k is the number of k -sided faces of a graph G of any family $\mathcal{M}(q, r)$, and if v_k is the number of k -valent vertices of G then, by a conclusion from Euler's theorem,

$$\sum_{k \geq 3} (4 - k)(p_k + v_k) = 8(1 - g)$$

where g is the genus of the manifold carrying G (compare Grünbaum [4]). Therefore, $\mathcal{M}(4, 4)$ consists only of the family $\mathcal{G}(4, 4)$ plus the corresponding families on the torus and on the projective plane. In case of the torus, $p_3 + v_3 = 0$, hence $p_3 = v_3 = 0$, and the graphs are Hamiltonian by a result of Altshuler [1]. For $\mathcal{G}(4, 4)$ a stronger result can also be established [3]. However, $\mathcal{G}(4, 4)$ is not Hamiltonian [6].

J. Kraeft has contributed to the proof of part (iii) of Theorem 1.1.

2. Proof of Theorem 1.1 (i)

We begin by stating an obvious fact.

LEMMA 2.1. *Let every member G of a family $\mathcal{M}(q, r)$ of graphs possess a circuit $H(G)$ with the following property: there exists a constant integer m ,*

depending only on $\mathcal{M}(q, r)$, such that every vertex of G has distance at most m from $H(G)$. Then $s(q, r) = 1$.

We shall use Lemma 2.1 in this section as well as in subsequent sections.

Let G be a member of $\mathcal{G}(4,4)$. If $F^{(0)}$ is a face of G (that is, (i) of the polytope P in E^3 such that $\text{skel}_1 P = G$, or (ii) of the closed 2-dimensional cell complex having G as skeleton), its three or four boundary edges form a circuit H_0 . If $F^{(1)}$ is adjacent to F , that is, has an edge in common with $F^{(0)}$, we *pull* H_0 over $F^{(1)}$ as indicated in Fig. 1, obtaining a circuit H_1 that contains all vertices of $F^{(0)} \cup F^{(1)}$

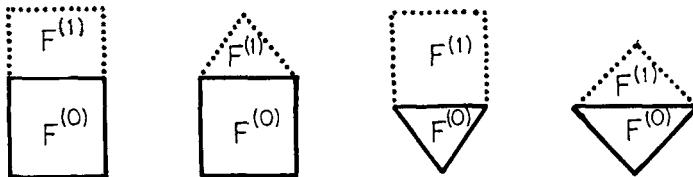


Fig. 1.

Then we choose an appropriate face $F^{(2)}$ adjacent to $F^{(0)}$ or $F^{(1)}$ and change H_1 into a circuit containing all vertices of $F^{(0)} \cup F^{(1)} \cup F^{(2)}$. In this way we build up circuits with an increasing number of vertices. We also apply operations as shown in Fig. 2. In these, we *lose* one vertex and *win* three or two vertices.

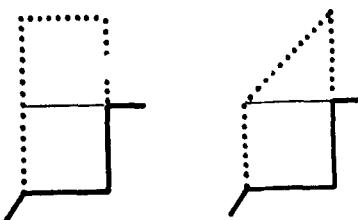


Fig. 2.

Suppose now that the elementary operations described above have been applied in such a way that a maximal number of vertices of G is covered by the circuit H .

LEMMA 2.2. *If a face F of G has no vertex on H then all vertices adjacent to the vertices of F are on H .*

PROOF. If no vertex adjacent to a vertex of F is on H we set $F = F_1$ and choose a face F_2 of G adjacent to F . Clearly, F_2 has no vertex lying on H . If no vertex adjacent to a vertex of F_2 is also on H , we again choose a face $F_3 \neq F_1$ adjacent to F_2 . Continuing in this way we eventually find a face F_l which possesses no

vertex lying on H , such that a vertex p_1 of G adjacent to a vertex b of F_l is on H . Let a, c be the vertices of F_l adjacent to b (Fig. 3).

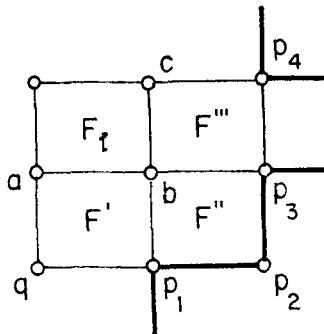


Fig. 3.

If p_1 had valence 3, H would contain an edge of the face F' with a, b, p_1 or c, b, p_3 , say a, b, p_1 as vertices. Since a is not on H , the face F' would be a quadrangle with a fourth vertex q . Then, however, H could be prolonged by pulling qp_1 over F' , that is, replacing qp_1 by $qabp_1$. This contradicts the maximality of H . So we may assume p_1 to have valence 4 and we denote by F'' the face satisfying $F' \cap F'' = p_1b$. Furthermore, we denote by p_2 the vertex $\neq b$ of F'' adjacent to p_1 . Clearly, p_1p_2 is on H . If F'' were a triangle, p_1p_2 could be replaced by the longer path p_1bp_2 , a contradiction. So F'' is a quadrangle. We denote its fourth vertex by p_3 .

If p_3 were not on H , we could replace p_1p_2 by $p_1bp_3p_2$. Thus p_3 is on H . Let F''' be the face adjacent to F_l and F'' . If F''' were a triangle or if its fourth vertex p_4 were not on H , we could apply one of the elementary operations of Fig. 2 and extend H . So F''' is a quadrangle, and its fourth vertex p_4 lies on H . Clearly, p_3p_4 is not on H since otherwise p_3p_4 could be replaced by p_3bcp_4 . Therefore, H must contain the edges indicated by heavy lines in Fig. 3.

We apply to p_4 the same arguments as we have applied to p_1 . Continuing in this way, we obtain the situation shown in Fig. 4 or 5, depending on whether F_l is a quadrangle or a triangle. In both cases, all vertices adjacent to a vertex of F_l lie on H . Therefore, $l = 1$, and Lemma 2.2 follows.

Clearly, every vertex of G now has distance at most 1 from H . Therefore, by Lemma 2.1, $s(4, 4) = 1$.

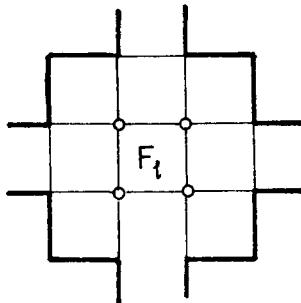


Fig. 4.

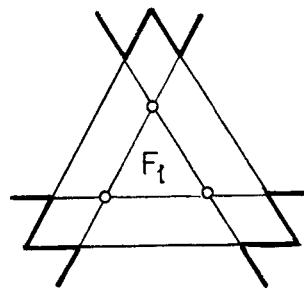


Fig. 5.

3. Proof of Theorem 1.1 (ii)

Let G be a member of $\mathcal{G}(6, 3)$. As in Section 2, we let H_0 be the boundary of a face $F^{(0)}$ and pull it over a face $F^{(1)}$ adjacent to $F^{(0)}$, obtaining a circuit passing through all vertices of $F^{(0)} \cup F^{(1)}$. Again, we assume this process has been carried out in an optimal way so as to build up a circuit H in G covering a maximal number of vertices.

LEMMA 3.1. *H contains a vertex of every face of G .*

PROOF. Suppose there exists a face F free of vertices of H . We may choose F in such a way that there exists a facet F' adjacent to F that is not free of vertices of H . If only one side xy of F' were on H , we could replace xy by the remaining sides of F' , obtaining a circuit longer than H . So we can assume at least three vertices of F' to lie on H among which is one, say p , adjacent to a vertex a of F . Let b be the vertex of F adjacent to a such that $F \cap F' = ab$. We denote by q the vertex $\neq a$ of F' adjacent to p , and by r the vertex $\neq a$ of F' adjacent to b . F'

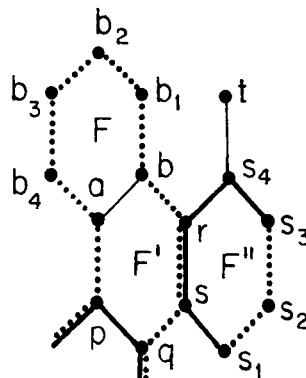


Fig. 6.

cannot be a triangle since otherwise a or b would lie on H . If F' were a pentagon or a quadrangle ($q = r$ in the latter case), H would necessarily contain qr (in case $q \neq r$) or pr (in case $q = r$), and hence could be extended by substituting $pabr$ for pqr or pr , respectively. This contradicts the maximality of H . So let s be the sixth vertex of F' .

We denote the vertices of F by $a, b = b_0, b_1, \dots, b_n$, where $4 \geq n \geq 1$ and b_i is adjacent to b_{i-1} , $i = 1, \dots, n$.

If s were not on H , then r would not be on H , and we could pull H over F' , a contradiction to the maximality of H . So s lies on H . If qs were part of H , we could replace pqs or pqr (in case r , and hence sr , are also on H) by $pab_n b_{n-1} \dots b_1 brs$ or $pab_n b_{n-1} \dots b_1 br$, respectively, thus winning at least three points and losing at most two. This again contradicts the maximality of H .

Therefore, rs is on H , but qs is not on H . Let F'' be the face of G satisfying $F' \cap F'' = rs$. We denote the vertices of F'' by $r, s = s_0, s_1, \dots, s_n$, where $4 \geq n \geq 2$ and s_i is adjacent to s_{i-1} , $i = 1, \dots, n$. The same arguments applied to p we now apply to r , obtaining that rs_n is on H but $s_n t$ is not on H , where $t \neq s_{n-1}$ is adjacent to s_n . Thus $s_n s_{n-1}$ is part of H . This implies that F'' is a pentagon or a hexagon; in the former case we set $s_3 = s_2$. If F'' is a hexagon, either $s_1 s_2$ is on H , $s_2 s_3$ is on H , or s_2 is not on H . In any of these cases we can pull back H over F'' , replacing $s_2 s_1 s_r s_4 s_3$, $s_1 s_r s_4 s_3 s_2$, or $s_1 s_r s_4 s_3$ by $s_2 s_3$, $s_1 s_2$, or $s_1 s_2 s_3$, respectively. Having done this we replace pq by $pab_n \dots b_1 brs$. Altogether we lose at most two vertices and win at least three. This contradicts the maximality of H and we have proved Lemma 3.1.

Now clearly every vertex of G is seen to have distance at most 3 from H . Therefore, by Lemma 2.1, $s(6, 3) = 1$.

4. Proof of Theorem 1.1 (iii)

Let now G be a member of $\mathcal{G}(3, 7)$. Starting with the boundary of some triangle we build up a circuit by pulling it successively over faces of G , as we have done in the preceding sections for other graphs. Suppose we have obtained a circuit H of maximal possible length in G .

LEMMA 4.1. *If a facet T has no vertex on H then there exists a vertex adjacent to a side of T that is on H .*

PROOF. As in the proof of Theorem 1.1 (i), we may assume that there exists a vertex p of H adjacent to a vertex, say r_1 , of T . Suppose none of the vertices

t_1, t_2, t_3 not on T but adjacent to the sides of T , respectively, is on H . Let the r_i and the t_i be numbered as in Fig. 7 ($i=1, 2, 3$). We also introduce T_1, T_2, T_3 as shown in the figure.

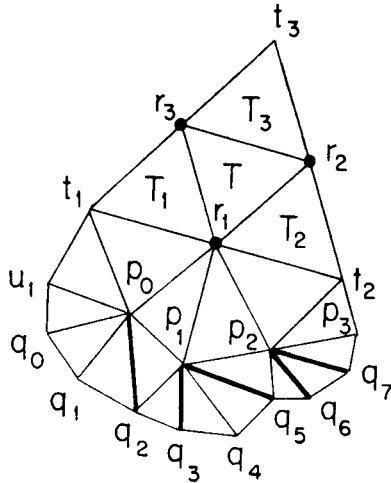


Fig. 7.

First we suppose $p = p_0$ to be adjacent to t_1r_1 . Let $p_1 \neq t_1$ be adjacent to p_0r_1 and $u_1 \neq r_1$ be adjacent to t_1p_0 . If p_0p_1 were on H we could replace it by $p_0r_1p_1$, a contradiction.

Nor is p_0u_1 on H . Let $p_1, p_3, q_0, q_1, \dots, q_7$ be introduced as in Fig. 7 where it is assumed that each of the vertices p_0, p_1, p_2 has valence 7. If p_0q_2 is part of H , p_1q_2 cannot be on H since, otherwise, we could replace $p_0q_2p_1$ by $p_0t_1r_1p_1$. But p_1 must lie on H since, otherwise, p_0q_2 could be replaced by $p_0r_1p_1q_2$. If $q_3p_1q_4$ or $q_4p_1q_5$ were a path of H we could replace it by q_3q_4 or q_4q_5 , respectively, and extend p_0q_2 as before. p_1p_2 is not on H since it could be extended to $p_1r_1p_2$. So $q_3p_1q_5$ is on H . By similar argument it is shown that p_2 is on H but neither p_2q_5 nor p_2p_3 is on H . Therefore, $q_6p_2q_7$ is on H . Then we can replace $q_6p_2q_7$ by q_6q_7 and p_1q_5 by $p_1r_1p_2q_5$, again a contradiction.

If one of the vertices p_0, p_1, p_2 has valence < 7 we obtain similar contradictions. Thus we find that $q_0p_0q_1$ is a path of H .

Let u_1, u_2, u_3, u_4 be introduced as shown in Fig. 8. We assume again that they all have valence 7; if not, the arguments become easier and can be left out here. Hence we can introduce s_1, s_2, \dots, s_{10} as shown in Fig. 8.

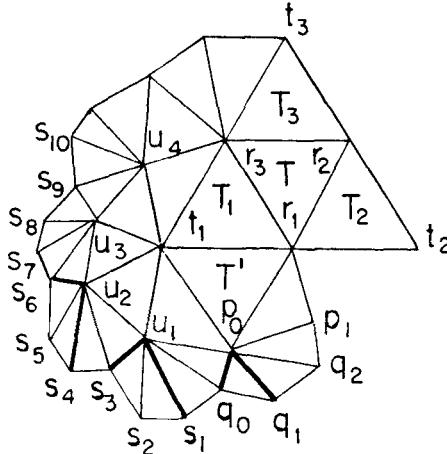


Fig. 8.

If u_1 were not on H , we could replace p_0q_0 by $p_0u_1q_0$. If u_1q_0 were on H we could replace $u_1q_0p_0$ by $u_1t_1r_1p_0$. If $s_1u_1s_2$ or $s_2u_1s_3$ were on H we could replace it by s_1s_2 or s_2s_3 , respectively, and extend p_0q_0 to $p_0r_1t_1u_1q_0$. Clearly, u_1u_2 is not on H . Therefore, $s_1u_1s_3$ must be a path of H .

u_2 is on H since, otherwise, u_1s_3 could be replaced by $u_1u_2s_3$. If u_2s_3 were on H , we could replace $q_0p_0q_1$ by q_0q_1 and $u_2s_3u_1$ by $u_2t_1r_3r_1p_0u_1$. None of the paths $s_4u_2s_5$ or $s_5u_2s_6$ is on H since it could be replaced by s_4s_5 or s_5s_6 , respectively, so that u_1s_3 were extendable to $u_1t_1u_2s_3$. Nor is u_2u_3 on H . Therefore, $s_4u_2s_6$ is on H .

Clearly, u_3 must also lie on H , but none of the paths $s_7u_3s_8$ or $s_8u_3s_9$ is on H . Suppose u_3s_6 is on H . Then either (i) u_4 is not on H and we replace $u_3s_6u_2$ by $u_3u_4r_3r_1t_1u_2$, or (ii) u_4 is on H . In the second case the same arguments as applied to p_0 show that $s_9u_4s_{10}$ is a path of H . We can replace $s_9u_4s_{10}$ by s_9s_{10} , and replace $u_2s_6u_3$ by $u_2t_1r_1r_3u_4u_3$. Since u_3u_4 is not on H , we conclude that $s_7u_3s_9$ is on H . If u_4 is not on H , we replace u_3s_9 by $u_3t_1u_4s_9$. If u_4 , and hence $s_9u_4s_{10}$ (as $q_0p_0q_1$), is on H , we replace $u_3s_9u_4$ by $u_3t_1r_1r_3u_4$.

Therefore, the assumption that p_0 is adjacent to r_1t_1 leads to a contradiction. In fact, no vertex adjacent to a side of T_1 , T_2 , or T_3 is on H .

Therefore we can replace T by T_1 as shown in Fig. 8. By the same reasoning as used above we see that p_1 , u_1 are not on H . Now we replace T by T' and conclude that p_2 is not a vertex of H (Fig. 7). This contradiction proves Lemma 4.1. Hence, by Lemma 4.1 and Lemma 2.1, $s(3, 7) = 1$.

REFERENCES

1. A. Altshuler, *Hamiltonian circuits in some maps on the torus*, Discrete Math. **1** (1972), 299–314.
2. G. Ewald, *Hamiltonian circuits in simplicial complexes*, Geometriae Dedicata **2** (1973), 115–125.
3. G. Ewald, *Cut numbers and long circuits in graphs of the family $\mathcal{G}(4,4)$* (to appear).
4. B. Grünbaum, *Polytopes, graphs, and complexes*, Bull. Amer. Math. Soc. **76** (1970), 1131–1201.
5. B. Grünbaum and H. Walther, *Shortness exponents of families of graphs*, J. Combinatorial Theory (A) **14** (1973), 364–385.
6. C. N. Reynolds, *Circuits upon polyhedra*, Ann. of Math. **33** (1932), 367–372.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF BRITISH COLUMBIA, CANADA

AND

INSTITUT FÜR MATHEMATIK

RUHR-UNIVERSITÄT, BOCHUM, GERMANY